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Abstract 

Renewed motives for space exploration have inspired NASA to work toward the goal of 
establishing a virtual presence in space, through heterogeneous fleets of robotic explorers. 

Information technology, and Artificial Intelligence in particular, will play a central role in this 
endeavor by endowing these explorers with a form of computational intelligence that we call remote 
ayems. In this paper we describe the Remote Agent, a specific autonomous agent architecture 
based on the principles of model-based programming, on-board deduction and search, and goal- 
directed closed-loop commanding, that takes a significant step toward enabling this future. This 
architecture addresses the unique characteristics of the spacecraft domain that require highly reliable 
autonomous operations over long periods of time with tight deadlines, resource constraints, and 
concurrent activity among tightly coupled subsystems. The Remote Agent integrates constraint- 
based temporal planning and scheduling, robust multi-threaded execution, and model-based mode 

identification and reconfiguration. The demonstration of the integrated system as an on-board 
controller for Deep Space One, NASA’s first New Millennium mission, is scheduled for a period 
of a week in mid 1999. The development of the Remote Agent also provided the opportunity 
to reassess some of AI’s conventional wisdom about the challenges of implementing embedded 
systems, tractable reasoning, and knowledge representation. We discuss these issues, and our often 
contrary experiences, throughout the paper. 0 1998 Published by Elsevier Science B.V. 
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The melding of space exploration and robotic intelligence has had an amazing hold on 

the public imagination, particularly in its vision of the future. For example, the science 

fiction classic “2001: A Space Odyssey” offered a future in which humankind was firmly 
established beyond Earth, within amply populated moon-bases and space-stations. At the 
same time, intelligence was firmly established beyond humankind through the impressive 
HAL9000 computer, created in Urbana, Illinois on January 12, 1997. In fact, January I2th, 

1997 has passed without a moon base or HAL9000 computer in sight. The International 

Space Station will begin its launch into space this year, reaching completion by 2002. 
However, this space station is far more modest in scope. 

While this reality is far from our ambitious dreams for humans in space, space 
exploration is surprising us with a different future that is particularly exciting for robotic 
exploration, and for the information technology community that will play a central role in 

enabling this future: 

Our vision in NASA is to open the Space Frontier. When people think of space, they 

think of rocket plumes and the space shuttle. But the future of space is in information 

technology. We must establish a virtual presence, in space, on planets, in aircraft, and 

spacecraft. 

- Daniel S. Goldin, NASA Administrator, Sacramento, California, May 29, 1996. 

Providing a virtual human presence in the universe through the actual presence of a 
plethora of robotic probes requires a strong motive, mechanical means, and computational 
intelligence. We briefly consider the scientific questions that motivate space exploration 
and the mechanical means for exploring these questions, and then focus the remainder of 

this paper on our progress towards endowing these mechanical explorers with a form of 
computational intelligence that we call remote agents. 

The development of a remote agent under tight time constraints has forced us to re- 
examine, and in a few places call to question, some of Al’s conventional wisdom about the 

challenges of implementing embedded systems, tractable reasoning and representation. 
This topic is addressed in a variety of places throughout this paper. 

1.1. Estublishing a virtuul presence in space 

Renewed motives for space exploration have recently been offered. A prime example is 
a series of scientific discoveries that suggest new possibilities for life in space. The best 
known example is evidence, found during the summer of 1996, suggesting that primitive 
life might have existed on Mars more than 3.6 billion years ago. More specifically, 
the recent discovery of extremely small bacteria on Earth, called nanobacteria, led 
scientists to examine the Martian meteorite AlH84001 at fine resolution, where they found 
evidence suggestive of “native microfossils, mineralogical features characteristic of life, 
and evidence of complex organic chemistry” [47]. Extending a virtual presence to confirm 
or overturn these findings requires a new means of exploration that has higher performance 
and is more cost effective than traditional missions. Traditional planetary missions, such 
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Fig. 1. Planned and concept missions to extend human virtual presence in the universe. (I) Mars Sample 

Return missions (courtesy of NASA Johnson Space Center); (2) cryobot and hydrobot for Europa oceanographic 

exploration (courtesy of JPL); (3) DS3 formation flying optical interferometer (courtesy of JPL); (4) Mars solar 

airplane (courtesy of NASA Ames Research Center). 

as the Galileo Jupiter mission or the Cassini Saturn mission, have price tags in excess of 

a billion dollars, and ground crews ranging from 100 to 300 personnel during the entire 
life of the mission. The Mars Pathfinder (MPF) mission introduced a paradigm shift within 

NASA towards lightweight, highly focused missions, at a tenth of the cost, and operated 
by small ground teams [ 141. The viability of this concept was vividly demonstrated last 
summer when MPF landed on Mars and enabled the Sojourner micro-rover [48] to become 
the first mobile robot to land on the surface of another planet. 

Pathfinder and Sojourner demonstrate an important mechanical means to achieving a 
virtual presence, but currently lack the on-board intelligence necessary to achieve the goals 

of more challenging missions. For example, operating Sojourner for its two month life span 
was extremely taxing for its small ground crew. Future Mars rovers are expected to operate 
for over a year, emphasizing the need for the development of remote agents that are able to 
continuously and robustly interact with an uncertain environment. 

Rovers are not the only means of exploring Mars. Another innovative concept is a solar 
airplane, under study at NASA Lewis and NASA Ames. Given the thin CO2 atmosphere 
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on Mars, a plane flying a few feet above the Martian surface is like a terrestrial plane 
flying more than 90000 feet above sea level. This height is beyond the reach of all but 

a few existing planes. Developing a Martian plane that can autonomously survey Mars 
over long durations, while surviving the idiosyncrasies of the Martian climate, requires the 

development of remote agents that are able to accurately model and quickly adapt to their 
environment. 

A second example is the discovery of the first planet around another star, which raises 

the intriguing question of whether or not Earth-like planets exist elsewhere. To search for 
Earth-like planets, NASA is developing a series of interferometric telescopes [ 161, such as 
the New Millennium Deep Space Three (DS3) mission. These interferometers identify and 

categorize planets by measuring a wobble in a star, induced by its orbiting planets. They 

are so accurate that, if pointed from California to Washington DC, they could measure the 
thickness of a single piece of paper. DS3 achieves this requirement by placing three optical 
units on three separate spacecraft, flying in tight formation up to a kilometer apart. This 
extends the computational challenge to the development of multiple, tightly coordinated 

remote agents. 
A final example is the question of whether or not some form of life might exist 

beneath Europa’s frozen surface. In February of 1998, the Galileo mission identified 
features on Europa, such as a relatively smooth surface and chunky ice rafts, that lend 

support to the idea that Europa may have subsurface oceans, hidden under a thin icy 
layer. One of NASA’s most intriguing concepts for exploring this subsurface ocean is an 
ice penetrator and a submarine, called a cryobot and hydrobot, that could autonomously 
navigate beneath Europa’s surface. This hydrobot would need to operate autonomously 

within an environment that is utterly unknown. 
Taken together, these examples of small explorers, including micro-rovers, airplanes, 

formation flying interferometers, cryobots, and hydrobots, provide an extraordinary 

opportunity for developing remote agents that assist in establishing a virtual presence in 

space, on land, in the air and under the sea. 

1.2. Requirements for building remote agents 

The level of on-board autonomy necessary to enable the above missions is unprece- 
dented. Added to this challenge is the fact that NASA will need to achieve this capability 
at a fraction of the cost and design time of previous missions. In contrast to the billion 
dollar Cassini mission, NASA’s target is for missions that cost under 100 million dollars, 

developed in 2-3 years, and operated by a small ground team. This ambitious goal is to be 
achieved at an Apollo-era pace, through the New Millennium Program’s low cost, technol- 
ogy demonstration missions. The first New Millennium probe, Deep Space One (DSl), has 
a development time of only two and a half years and is scheduled for a mid- 1998 launch. 

The unique challenge of developing remote agents for controlling these space explorers 
is driven by four major properties of the spacecraft domain. First, a spacecraft must carry 
out autonomous operations for long periods of time with no human intervention. This 
requirement stems from a variety of sources including the cost and limitations of the deep 
space communication network, spacecraft occultation when it is on the “dark side” of a 
planet, and communication delays. For example, the Cassini spacecraft must perform its 
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critical Saturn orbit insertion maneuver without any human assistance due to its occultation 

by Saturn. 
Second, autonomous operations must guarantee success, given tight deadlines and 

resource constraints. Tight deadlines that give no second chances stem from orbital 
dynamics and rare celestial events, and include examples such as executing an orbit 
insertion maneuver within a fixed time window, taking asteroid images during a narrow 

window around the time of closest approach, and imaging a comet’s fiery descent into 
Jupiter. Tight spacecraft resources, whether renewable like power or non-renewable like 

propellant, must be carefully managed and budgeted throughout the mission. 

Third, since spacecraft are expensive and are often designed for unique missions, 
spacecraft operations require high reliabifity. Even with the use of highly reliable hardware, 

the harsh environment of space can still cause unexpected hardware failures. Flight 
software must compensate for such failures by repairing or reconfiguring the hardware, 
or switching to possibly degraded operation modes. Providing such a capability is 
complicated by the need for rapid failure responses to meet hard deadlines and conserve 

precious resources, and due to limited observabili9 of spacecraft state. The latter stems 
from limited on-board sensing, since additional sensors add weight, and hence increase 

mission cost. Furthermore, sensors are no more reliable, and often less so, than the 
associated hardware, thus making it difficult to deduce true spacecraft state. 

Fourth, spacecraft operation involves concurrent uctivity among a set of tightly coupled 

subsystems. A typical spacecraft is a complex networked, multi-processor system, with one 

or more flight computers communicating over a bus with sophisticated sensors (e.g., star 
trackers, gyros, sun sensors), actuator subsystems (e.g., thrusters, reaction wheels, main 

engines), and science instruments. These hybrid hardware/software subsystems operate 
as concurrent processes that must be coordinated to enable synergistic interactions and 
to control negative ones. For example, while a camera is taking a picture, the attitude 

controller must hold the spacecraft at a specified attitude, and the main engine must be 
off since otherwise it would produce too much vibration. Hence, all reasoning about the 

spacecraft must reflect this concurrent nature. 

1.3. A Remote Agent architecture 

Following the announcement of the New Millennium program in early 1995, spacecraft 
engineers from JPL challenged a group of AI researchers at NASA Ames and JPL 

to demonstrate, within the short span of five months, a fully capable remote agent 
architecture for spacecraft control. To evaluate the architecture the JPL engineers defined 
the New Millennium Autonomy Architecture Prototype (NewMAAP), a simulation study 

based on the Cassini mission, that retains its most challenging aspects. The NewMAAP 
spacecraft is a scaled down version of Cassini, NASA’s most complex spacecraft to date. 
The NewMAAP scenario is based on the most complex mission phase of Cassini- 

successful insertion into Saturn’s orbit even in the event of any single point of failure. The 
Remote Agent architecture developed for the NewMAAP scenario integrated constraint- 
based planning and scheduling, robust multi-threaded execution, and model-based mode 
identification and reconfiguration. An overview of the architecture is provided in Section 2. 
Additional details, including a description of the NewMAAP scenario, may be found 



in [57]. The success of the NewMAAP demonstration resulted in the Remote Agent being 
selected as a technology experiment on DS 1. This experiment is currently scheduled for 
late 1998. Details of the experiment are found in [5]. 

The development of the Remote Agent architecture also provided an important 

opportunity to reassess some of Al’s conventional wisdom, which includes: 
l “Generative planning does not scale up for practical problems.” 

l “[For reactive systems] proving theorems is out of the question” [ 11. 
l “[Justification-based and Logical Truth Maintenance Systems] have proven to be 

woefully inadequate . . they are inefficient in both time and space” [ 181. 
l “[Qualitative] equations are far too general for practical use” [63]. 
We examine these statements in more detail later in the paper. But first we highlight the 

three important guiding principles underlying the design of the Remote Agent architecture. 

1.4. Principles guiding the design of the Remote Agent 

Many agent architectures have been developed within the Al community, particularly 
within the field of indoor and outdoor mobile robots. The Remote Agent architecture has 

three distinctive features. First, it is largely programmable through a set of compositional, 

declarative models. We refer to this as model-bused programming. Second, it performs 
significant amounts of on-board deduction und search at time resolutions varying from 
hours to hundreds of milliseconds. Third, the Remote Agent is designed to provide high- 

level closed-loop commanding. 

1.4.1. Model-based programming 

The most effective way to reduce software development cost is to make the software 
“plug and play”, and to amortize the cost of the software across successive applications. 
This is difficult to achieve for the breadth of tasks that constitute an autonomous system 
architecture, since each task requires the programmer to reason through system-wide 
interactions to implement the appropriate function. For example, diagnosing a failed 

thruster requires reasoning about the interactions between the thrusters, the attitude 
controller, the star tracker, the bus controller, and the thruster valve electronics. Hence 

this software lacks modularity, and has a use that is very restricted to the particulars of the 
hardware. The one of a kind nature of NASA’s explorers means that the cost of reasoning 

through system-wide interactions cannot be amortized, and must be paid over again for 
each new explorer. In addition, the complexity of these interactions can lead to cognitive 
overload by the programmers, causing suboptimal decisions and even outright errors. 

Our solution to this problem is called model-bused programming, introduced in [70]. 
Model-based programming is based on the observation that programmers and operators 
generate the breadth of desired functionality from common-sense hardware models in light 
of mission-level goals. In addition, the same model is used to perform most of these tasks. 
Hence, although the flight software itself is not highly reusable, the modeling knowledge 
used to generate this software is highly reusable. 

To support plug and play, the Remote Agent is programmed, wherever possible, by 
specifying and plugging together declarative component models of hardware and software 
behaviors. The Remote Agent then has the responsibility of automating all reasoning 
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about system wide interactions from these models. For example, the model-based mode 
identification and reconfiguration component of the Remote Agent uses a compositional, 
declarative, concurrent transition system model with a combination of probabilistic and 
deterministic transitions (see Section 5). Similarly, the planning and scheduling component 

is constraint-based, operating on a declarative domain model to generate a plan from first 
principles (see Section 3). Even the executive component, which is primarily programmed 
using a sophisticated scripting language, uses declarative models of device properties and 
interconnections wherever possible; generic procedures written in the scripting language 
operate directly on these declarative models. 

1.4.2. On-board deduction and search 

Given the task of automating all reasoning about system interactions, a natural question 
is whether or not the Remote Agent should do this on-board in real-time or off-board 
at compile time. The need for fast reactions suggests that all responses should be pre- 

computed. However, since our space explorers often operate in harsh environments 
over long periods of time, a large number of failures can frequently appear during 
mission critical phases. Hence pre-enumerating responses to all possible situations quickly 
becomes intractable. When writing flight software for traditional spacecraft, tractability is 

usually restored with the use of simplifying assumptions, such as using local suboptimal 
control laws, assuming single faults, ignoring sensor information, or ignoring subsystem 
interactions. Unfortunately, this can result in systems that are either brittle or grossly 
inefficient, which is one reason why so many human operators are needed within the 

control loop. 
The difficulty of pre-computing all responses and the requirement of highly survivable 

systems means that the Remote Agent must use its models to synthesize timely responses 
to anomalous and unexpected situations in real-time. This applies equally well to the high- 
level planning and scheduling component and to the low-level fault protection system, both 
of which must respond to time-critical and novel situations by performing deduction and 
search in real-time (though, of course, the time-scale for planning is significantly larger 
than for fault protection). 

This goal goes directly counter to the conventional AI wisdom that robotic executives 
should avoid deduction within the reactive loop at all costs. This wisdom emerged in the 

late 80’s after mathematical analysis showed that many, surprisingly simple, deductive 
tasks were NP-hard. For example, after proving that his formulation of STRIPS-style 
planning was NP-hard, David Chapman concluded [ 111: 

“Hoping for the best amounts to arguing that, for the particular cases that come up 
in practice, extensions to current planning techniques will happen to be efficient. My 
intuition is that this is not the case.” 

On the flip side, what offers hope is the empirical work developed in the early 90’s on 
hard satisfiability problems. This work found that most satisfiability problems can quickly 
be shown to be satisfiable or unsatisfiable [ 12,641. The surprisingly elusive hard problems 
lie at a phase transition from solvable to unsolvable problems. The elusiveness of hard 
problems, at least in the space of randomly generated problems, suggests that many real 
world problems may be tractable. This raises the possibility that a carefully designed 
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and constrained deductive kernel could perform significant deduction in real-time. For 
example, the diagnosis and recovery component of the Remote Agent adopts a RISC-like 

approach in which a wide range of deductive problems are reduced to queries on a highly 
tuned, propositional, best-first search kernel [56,71]. The planning component exploits a 
set of assumptions about domain structuring to generate plans with acceptable efficiency 
using a simple search strategy and a simple language for writing heuristic control rules. 

1.4.3. Goal-directed, closed loop commanding 

A mission like Cassini requires a ground crew of 100-300 personnel at different mission 
stages. The driver for such a large team is not so much Cassini’s nominal mission, but 

the effort required to robustly respond to extraordinary situations. Likewise, the need for 
extreme robustness without extensive ground interaction is Remote Agent’s most defining 

requirement. 

Traditional spacecraft are commanded through a time-stamped sequence of extremely 

low-level commands, such as “open valve-17 at 20:34 exactly”. This low level of direct 
commanding with rigid time stamps leaves the spacecraft little flexibility when a failure 
occurs, so that it is unable to shift around the time of commanding or to change around 
what hardware is used to achieve commands. 

A fundamental concept supporting robustness in classical control systems is feedback 

control. Feedback control avoids the brittleness of direct commanding by taking a set 
point trajectory as input and, using a feedback mechanism that senses the system’s 
actual trajectory, commanding the system until the error between the actual and intended 
trajectories is eliminated. The set-point trajectory is a simple specification of an intended 
behavior, which gives the feedback controller freedom to determine the commands 

necessary to achieve this behavior 
The Remote Agent embodies the same concept at a much more abstract level. It is 

commanded by a goal trajectory (the mission profile) that specifies high-level goals during 
different mission segments, such as performing an engine calibration activity within a 24 

hour window before approaching the target. This gives the Remote Agent considerable 
flexibility as to how these goals are achieved. To achieve robustness, the Remote Agent uses 

its sensor information to continuously close the feedback loop at the goal level, quickly 
detecting and compensating for anomalies that cause the system to deviate from the goal 

trajectory. 
Traditionally this feedback loop is closed by astronauts and the ground crew. A popular 

example that highlights the diverse actions humans can take to close this loop in 
extraordinary situations is the Apollo 13 crisis. The crisis began when a quintuple fault 
occurred, consisting of three electrical shorts, and a tank-line and a pressure jacket bursting. 
A first challenge for the ground crew was to accurately assess the health state of the 

spacecraft from its limited sensor information. No repair to the spacecraft would get the 
mission back on track to the moon, hence the second challenge involved quickly designing 
a new mission sequence that would allow the Apollo capsule to return to Earth in its 
hobbled state. Recall that astronaut Mattingly worked extensively in a ground simulator, in 
search of a novel command sequence that would work within the severe power limitations 
of the imperiled spacecraft. Ultimately Mattingly achieved this only through a novel, but 
unintended reconfiguration of the spacecraft hardware that drew current from the lunar 
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module’s battery. Finally, astronauts Swaggert and Love11 had the challenge of quickly 
assembling together procedures that would guide the capsule through Mattingly’s new 
mission sequence. This example highlights four basic roles performed by humans, that 
must also be embodied, albeit in a simpler form, within the Remote Agent. The first two 

roles, diagnosis of multiple failures and novel reconfiguration of hardware is performed 
by Remote Agent’s model-based mode identification and reconfiguration component. 

Generation of new mission sequences under tight resource constraints is performed by the 

Remote Agent’s planner/scheduler. Flexible assembly and execution of flight procedures 
to implement new and changing mission sequences is implemented by the Remote Agent’s 

executive component. 
In the next section we discuss how each of these components interact within the Remote 

Agent architecture. We then focus on technical lessons related to the three components of 

the Remote Agent, and then discuss key technology insertion lessons. 

2. Remote Agent architecture 

This section provides an overview of the Remote Agent (RA) architecture. The 
architecture was designed to address the domain requirements discussed in Section 1.2. The 

need for autonomous operations with tight resource constraints and hard deadlines dictated 
the need for a temporal Planner/Scheduler (PS), with an associated mission manager (MM), 

that manages resources and develops plans that achieve goals in a timely manner. The 
need for high reliability dictated the use of a reactive executive (EXEC) that provides 
robust plan execution and coordinates execution time activity, and a model-based mode 

identification and reconfiguration system (MIR) that enables rapid failure responses in 

spite of limited observability of spacecraft state. The need to handle concurrent activity 

impacted the representation formalisms used: PS models the domain with concurrently 
evolving state variables, EXEC uses multiple threads to manage concurrency, and MIR 
models the spacecraft as a concurrent transition system. 

Real-Time 
Control 

Fig. 2. Remote Agent architecture embedded within flight software. 
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The RA architecture, and its relationship to the flight software within which it is 
embedded, is shown in Fig. 2. When viewed as a black-box, RA sends out commands to the 

real-time control system (RT). RT provides the primitive skills of the autonomous system, 

which take the form of discrete and continuous real-time estimation and control tasks, e.g., 
attitude determination and attitude control. RT responds to commands by changing the 
modes of control loops or states of devices. Information about the status of RT control loops 

and hardware sensors is passed back to RA either directly or through a set of monitors. 

Planner/Scheduler (PS) and Mission Manager (MM). PS is a constraint-based integrated 
temporal planner and resource scheduler [52] that is activated by MM when a new plan is 

desired by the EXEC. When requested by the EXEC, MM formulates short-term planning 
problems for PS based on a long-range mission profile. The mission profile is provided 

at launch and can be updated from the ground when necessary. It contains a list of all 
nominal goals to be achieved during the mission. For example, the DSl mission profile 
contains goals such as optical navigation goals, which specify the duration and frequency 

of time windows within which the spacecraft must take asteroid images to be used for 
orbit determination by the on-board navigator. MM determines the goals that need to 
be achieved in the next horizon, e.g., a week or two long, and combines them with the 

initial (or projected) spacecraft state provided by EXEC. This decomposition into long- 
range mission planning and short-term detailed planning enables the RA to undertake an 
extended diverse mission with minimal human intervention. 

PS takes the plan request formulated by MM and uses a heuristic guided backtrack 
search to produce a flexible, concurrent temporal plan. The plan constrains the activity of 
each spacecraft subsystem over the duration of the plan, but leaves flexibility for details 

to be resolved during execution. The plan contains activities and information required 
to monitor the progress of the plan as it is executed. The plan also contains an explicit 
activity to initiate the next round of planning. For example, a typical DS 1 plan to achieve 
the above optical navigation goal requires the camera to be turned on and the spacecraft to 

be pointing at the asteroid before the image is taken. The plan leaves temporal flexibility 
on exactly when these events take place, and does not constrain the particular mode used 
by the attitude controller in effecting the turn. 

Other on-board software systems, called planning experts, participate in the planning 

process by requesting new goals or answering questions for PS. For example, the 
navigation planning expert requests main engine thrust goals based on its determination 

of spacecraft orbit, and the attitude planning expert answers questions about estimated 
duration of specified turns and resulting resource consumption. 

Smart Executive (EXEC). EXEC is a reactive plan execution system with responsibilities 
for coordinating execution-time activity. EXEC executes plans by decomposing high-level 
activities in the plan into commands to the real-time system, while respecting temporal 
constraints in the plan. EXEC uses a rich procedural language, ESL [35], to define alternate 
methods for decomposing activities. For example, a high-level activity in DSl such as 
thrusting the main engine is decomposed into coordinated commands to the main engine 
to start thrusting and to the attitude controller to switch into thrust vector control mode, 
and is executed only after the previous optical navigation window has ended. 
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EXEC achieves robustness in plan execution by exploiting the plan’s flexibility, e.g., 
by being able to choose execution time within specified windows or by being able 
to select different task decompositions for a high-level activity. EXEC also achieves 

robustness through closed-loop commanding, whereby it receives feedback on the results 
of commands either directly from the command recipient or by inferences drawn by the 

mode identification component of MIR. For example, when EXEC turns on the camera 
to prepare for imaging, MIR uses information from switch and current sensors to confirm 
that the camera did turn on. When some method to achieve a task fails, EXEC attempts to 

accomplish the task using an alternate method in that task’s definition or by invoking the 

mode reconfiguration component of MIR. 
When instructed to request a new plan by the currently executing plan, EXEC provides 

MM with the projected spacecraft state at the end of the current plan, and requests a new 
plan. If the EXEC is unable to execute or repair the current plan, it aborts the plan, cleans 

up all executing activities, and puts the controlled system into a stable safe state (called a 

standby mode). EXEC then provides MM the current state and requests a new plan while 
maintaining this standby mode until the plan is received. 

Mode Identijication and Reconjiguration (MZR). The MIR component of the RA 
is provided by Livingstone [71], a discrete model-based controller. Livingstone is 

distinguished by its use of a single declarative spacecraft model to provide all its 
functionality, and its use of deduction and search within the reactive control loop. 

Livingstone’s sensing component, called mode identification (MI), tracks the most likely 
spacecraft states by identifying states whose models are consistent with the sensed monitor 
values and the commands sent to the real-time system. MI reports all inferred state changes 

to EXEC, and thus provides a level of abstraction to the EXEC, enabling it to reason purely 
in terms of spacecraft state. For example, particular combinations of attitude errors allow 

Ml to infer that a particular thruster has failed. EXEC is only informed about the failed 
state of the thruster, and not about the observed low-level sensor values. 

Livingstone’s commanding component, called mode reconfiguration (MR), uses the 
spacecraft model to find a least cost command sequence that establishes or restores desired 

functionality by reconfiguring hardware or repairing failed components. Unlike PS, MR 
has a reactive focus, thus enabling it to rapidly suggest command sequences. Within the 
RA architecture, MR is invoked by the EXEC with a recovery request that specifies a set 
of constraints to be established and maintained. In response, MR produces a recovery plan 

that, when executed by EXEC, moves the spacecraft from the current state (as inferred by 
MI) to a new state in which all the constraints are satisfied. For example, if MI determines 
that the camera did not turn on when commanded, EXEC will request MR to repair the 
camera. MR will respond by instructing EXEC to retry the command. 

3. Planning and scheduling 

The Planner/Scheduler (PS) of the Remote Agent provides the high-level, deliberative 

planning component of the architecture. The extended duration of a space mission, coupled 
with the unpredictability of actions like thrusting, poses a challenge for planning, since 
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Fig. 3. PS architecture diagram 

it is impossible to plan the entire mission at the lowest level of detail. The approach 

in RA is to perform periodic planning [60], in which each round of planning has a 
restricted scheduling horizon. However, this raises a potential coherence problem, as 
activities within one horizon might compromise activities later in the mission (for example, 

aggressive maneuvers early in the mission may exhaust propellant needed for much 
later mission goals). RA addresses this problem through the Mission Manager (MM) 

component. When MM extracts goals for an upcoming round of planning, it also extracts 
constraints associated with the next waypoint in the mission profile. For example, a 

waypoint constraint specifies the amount of propellant that must be available for future use. 
By adding waypoint constraints to the current plan request, MM restricts PS to generate 
only plans that are coherent with the overall mission plan [61]. Hence, PS receives from 
MM and EXEC the initial spacecraft conditions, the goals for the next scheduling horizon, 
and the waypoint constraints. It produces a plan, which can be viewed as a high-level 
program that EXEC must follows in order to achieve the required goals. 

Fig. 3 shows the structure of PS (see [51,52] for more details). A general-purposepkun- 
ning engine provides a problem solving mechanism that can be reused in different applica- 
tion domains. A special-purpose domain knowledge base characterizes the application. The 
planning engine consists of the plan database and the search engine. The plan database is 
provided by the Heuristic Scheduling Testbed System (HSTS) framework. The search en- 
gine calls the plan database to record the consequences of each problem solving step and 
to require consistency maintenance and propagation services. 

The search engine, Iterative Refinement Search (IRS), is a chronological backtracker that 
encodes a set of methods usable to extend a partial plan. Programming the planning engine 
for a specific application requires both a description of the domain, the domain model, and 
methods for IRS to choose among branching alternatives during the search process, the 
domain heuristics. 

One crucial aspect of the success of PS is the ability to provide a good model of the 
domain constraints. To do so, PS uses the Domain Description Language (DDL), part of 
the HSTS framework. The models expressed in DDL use two strong domain organizational 
principles that are the foundation of HSTS. First, it structures the description of the system 
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as a finite set of state variables. A plan describes the evolution of a system as a set 
of parallel histories (timelines) over linear and continuous time, one per state variable. 

Second, it uses a unified representational primitive, the token, to describe both actions 

and state literals. As in [26], a token extends over a metric time interval. The description 
of a system consists of constraints between tokens that must be satisfied in a plan for it 

to represent legal behaviors of the controlled system. We further discuss these structural 

principles in Section 3.2. 

PS generates complex plans with performance acceptable for an on-board spacecraft 
application, even when using a very simple search strategy and a very simple heuristic 

language to program the search engine. This is because of the use of constraint posting and 

propagation as the primary problem solving method together with the restrictions on the 

topology of the constraint networks imposed by the structural principles of HSTS. 

PS is a concrete example of the fact that, by solely relying on concepts and techniques 

from AI planning and scheduling research, it is possible to solve complex problems of 

practical significance. These techniques include subgoaling, temporal reasoning, constraint 
propagation, and heuristic search. Furthermore, we believe that at the current time AI 

planning and scheduling techniques provide the most viable software engineering approach 

to the development of high-level commanding software for highly autonomous systems. 

This bears great promise for the future of the technology. 
We now discuss some of these points in more detail. 

3.1. Non-classicul aspects Qf the DSl domain 

A complex, mission-critical application like DSl is a serious stress-test for classical AI 
planning and scheduling technology. The classical AI planning problem is to achieve a set 

of goal conditions given an initial state and a description of the controlled system as a set 

of planning operators. Most classical AI planners use representations of the world derived 

from STRIPS [32], which sees the world as an alternation of indefinitely persistent states 
and instantaneous actions. Classical schedulers, on the other hand, see the world as a set 

of resources and a set of structured task networks, with each task having a duration that is 

known a priori. Solving a problem involves allocating a start time and a resource to each 
task while guaranteeing that all deadlines and resource limits are satisfied. 

The DSl domain not only forces a view of the world that merges planning and 
scheduling [51] but also introduces the need for significant extensions to the classical 

perspective. Here is a quick review of the types of constraints on system dynamics and 

the types of goals that PS must handle. 

3.1. I. System dynamics 

To describe the dynamics of the spacecraft hardware and real-time software, we find the 
need to express state/action constraints (e.g., preconditions such as “to take a picture, the 

camera must be on”), continuous time, and the management ofjnite resources (such as on- 
board electric power). Classical planning or classical scheduling cover all of these aspects. 
However, there are other modeling constraints that are equally important but outside the 
classical perspective. 
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l Persistent parallel threads: separate system components evolve in a loosely coupled 
manner. This can be represented as parallel execution threads that may need 

coordination on their relative operational modes. Typical examples of such threads 

are various control loops (e.g., Attitude Control and Ion Propulsion System Control) 

that can never terminate but only switch between different operational modes. 

l Functional dependencies: several parameters of the model are best represented as 
functions of other parameters. For example, the duration of a spacecraft turn depends 

on the pointing direction from where the turn starts and the one where the turn ends. 

The exact duration of a turn is not known a priori but can only be computed after 

PS decides the sequence of source and destination pointings within which the turn is 

inserted. 

l Continuous parameters: in addition to time, the planner must keep track of the status 

of other continuous parameters. These include the level of renewable resources like 

battery charge or data volume and of non-renewable resources like propellant. For 

example, in DSl the Ion Propulsion System (IPS) engine accumulates thrust over 

long periods of time (on the order of months). During thrust accumulation, several 

other activities must be executed that require the engine to be shut down while the 

activity is going on. Between interruptions, however, the plan must keep track of the 
previously accumulated amount of thrust so as not to over-shoot or under-shoot the 

total requested thrust. 

l Planning experts: it is unrealistic to expect that all aspects of the domain will be 
encoded in PS. In several cases sophisticated software modules are already available 

that effectively model subsystem behaviors and mission requirements. PS must be 

able to exchange information with these planning experts. For example, in DSI 

PS makes use of a Navigation expert which manages the spacecraft trajectory. The 

Navigation expert is in charge of feeding PS with beacon asteroid observation goals 

to determine the trajectory error and with thrusting maneuver goals to correct the 

trajectory. 

3.1.2. Goals 

The DSl problem can only be expressed by making use of a disparate set of classical 

and non-classical goal types. Problem requirements include conditions on final states 

(e.g., “at the end of the scheduling horizon the camera must be off”), which are classical 

planning goals, and requests for scheduled tasks within given temporal constraints (e.g., 

“communicate with Earth only according to a pre-defined Deep Space Network availability 
schedule”), which are classical scheduling goals. Non-classical categories of goals include: 

l Periodic goals: for example, optical navigation activities are naturally expressed as 
a periodic function (“take asteroid pictures for navigation for 2 hours every 2 days 

plus/minus 6 hours”). 

l Accumulation goals: these arise in the handling of continuous level resources. For 
example, in DS 1 a goal expresses the requested thrust accumulation as a duty cycle, 

i.e., the percentage of the scheduling horizon during which the IPS engine is thrusting. 
PS will choose the specific time intervals during which IPS will be actually thrusting. 

It will do so by trading off IPS requirements with those of other goals. 
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l Default goals: these specify conditions that the system must satisfy when not trying 
to achieve any other goal. For example. in order to facilitate possible emergency 

communications the spacecraft should keep the High Gain Antenna pointed to 

Earth whenever there is no other goal requiring it to point in a different di- 

rection. 

3.2. Domain structure principles 

We mentioned that PS has two strong structural principles regarding how to represent 
domain models. We call them the state variable principle and the token principle. We now 

discuss both of these in more detail. 
. State variable principle: the evolution of any system over time is entirely described 

by the values of a finite set of state variables. 

State variables are a generalization of resources as used in classical scheduling. In 

scheduling an evolution of the system is a description of task allocation to resources. 

Similarly, in PS any literal used inside a plan must be associated with a state variable. 

The literal represents the value assumed by the state variable at a given time, and a state 

variable can assume one and only one value at any point in time. Building a plan involves 

determining a complete evolution of all system state variables over a scheduling horizon 

of finite duration. 
At first glance, structuring a model with a finite set of state variables could appear quite 

restrictive. However, on further analysis one can see that using this perspective is quite 

natural even in domains typically addressed in classical planning. For example, in the 
“monkey and bananas” world all actions and state literals can be assigned as the values 

of one or more of the following state variables: the location of the monkey, the location 

of the block, the location of the bananas and the elevation of the monkey (whether the 

monkey is on the floor, climbing on the block or on top of the block). Moreover using state 

variables can be advantageous during problem solving. Recent results in planning research 

seem to suggest that planners that use representational devices similar to state variables can 

seriously outperform planners that do not (e.g., state variable constraints in Satplan 1421 
and mutex relations in Graphplan [6]). 

l Token principle: no distinction needs to be made between representational primitives 
for actions and states. A single representational primitive, the token, is sufficient to 

describe the evolution of system state variables over time. 

This structural principle challenges a fundamental tenet of classical planning: the 

dichotomy between actions and states. To illustrate why this dichotomy is problematic, 

we consider an example drawn from the spacecraft operations domain. The attitude of 
a spacecraft, i.e., its orientation in three-dimensional space, is supervised by a closed- 

loop Attitude Control System (ACS). When asked to achieve or maintain a certain 

attitude, ACS determines the discrepancy between the current and the desired attitude. 

It then appropriately commands the firing of the spacecraft thrusters as a function of 
the discrepancy and the maximum acceptable attitude error. This cycle is continuously 

repeated until the attitude error is acceptable. When controlled by ACS, the spacecraft can 
be in one of two possible modes: 



20 N. Muscettola et al. /ArtiJiciul lntelligmce 103 (1998) 547 

(1) Turning (?x, ?y) , i.e., changing attitude from an initial pointing ?x to a final 
pointing ? y; 

(2) Constant_Pointing ( ?z) , i.e., maintaining attitude around a fixed orienta- 
tion ?z. 

When using a classical planning representation to model attitude, we would need to 
map these two modes into two different kinds of literals: state literals, representing 

persistent conditions, or action literals, representing change. The problem is that in spite 
of appearances it is by no means easy to choose the mapping between system modes and 

states/actions. Most people would probably find it natural to map cons tant_Point ing 
( ?z) to a state literal and Turning ( ?x, ?y) to an action literal. This is certainly 

reasonable if one focuses on the value over time of the actual orientation of the spacecraft. 

However, we may want to take a different perspective and consider the level of “activity” 

of the thrusters during attitude control. Thrusters are usually more active when the 
acceptable error in attitude is smaller. In fact, thrusters are fired more frequently while 

maintaining a cons tant_Point ing ( ? z ) state with a very low error tolerance than 

while executing a Turning ( ?x, ? y ) , where it may be sufficient to fire the thrusters 
at the beginning of the turn to start it and at the end of the turn to stop it. In this case, one 
would conclude that in fact both Turning ( ?x, ?y) and constant_Pointing 
( ? z ) would be best represented as actions. 

The opposite perspective is also possible. If we focus on what EXEC does when 
executing literals present in the plan, we can see that EXEC does nothing more than 

communicating to ACS the appropriate control law and set point that will cause the 
required spacecraft attitude behavior. From this point of view, it would be reasonable 
to see both constant_Pointing(?z) and Turning (?x, ?y) as two different 

parameter settings for the ACS control system, conceptually best represented with state 

literals. 
In this example the distinction between actions and states is not clear. Given the above 

observations, PS takes a radical view and gives the same status to all literals. More 

precisely, a plan literal always describes some process (either dynamic or stationary) 
that occurs over a period of time of non-negative duration. To purposefully remove any 

reference to the state/action dichotomy, we use the neutral term token to refer to such 

temporally scoped assertions. 
A domain model contains constraint patterns that have to be in every consistent plan. 

For example, Fig. 4 gives the DDL construct representing the token conditions needed in a 

plan for the DS 1 Microelectronics Integrated Camera And Spectrometer (MICAS) to take 
an image. This action is represented in the plan by the token 

MICAS.actions_sv = 

Take-Image (?id, ?orientation, ?exp_time, ?settings) 

meaning that the state variable act ions_sv of the system component MICAS assumes 
a ground value matching the Take-Image predicate for the duration of the token. 

The constraint descriptor includes the specification of functional dependency between 
parameters of the token. In the example, the function Compute_Image_Duration 

computes the value of the token duration (special variable ?duration) as a function 
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MICAS.actions_sv = 

Take-Image (?id, ?orientation, ?exp_time, ?settings) 

1 
:parameter_functions 

?duration <- 

Compute_Image_Duration (?exp_time, ?settings); 

:temporal_relations 

met-by 

MICAS.actions_sv = Idle; 

meets 

MICAS.actions_sv = Idle; 

equal 

Power.availability_sv = 

DELTA used <- Used + 140.0; 

contained-by 

Spacecraft.attitude_sv = 

Constant-Pointing (?orientation) ; 
contained-by 

MICAS.health_sv = MICAS-Available; 

contained-by 

MICAS.mode_sv = Ready; 

Fig. 4. Taking a picture with the on-board MICAS camera. 

of the value of the token arguments ?exp_t ime and ? se t t ing. Finally, the descriptor 
includes temporal relations that have to be satisfied with other tokens in order for a plan 
to be consistent with the domain model. In the example these constraints follow the 

:temporal_relations keyword. They state that the MICAS.actions_sv state 

variable must be Idle immediately before and after the Take-Image token; that 
Take-Image consumes 140 W of power; that during Take-Image the spacecraft 

must be Constant-Pointing in the requested ?orientation; and that during 
Take-Image MICAS must be both in good health (MICAS-Available token) and 

Ready for use. 
The above constraint template is closely related to temporally scoped operators used 

in temporal planning approaches [3]. However, as a consequence of the token principle, 

our framework allows the expression of similar constraint patterns for “state” tokens 
like MICAS.actions_sv = Idle. In reality it is equally important to be able to 

express constraints both on “actions" and on “states". For example, a functional duration 
constraint may need to apply both to Turning ( ?x, ?y) , where duration depends 
on the angle between ?x and ?y), and to Constant-Pointing (?z), where the 
maximum duration may depend on how the relative orientation of the Sun with respect 
to ? z affects the satisfaction of solar exposure constraints for sensitive subsystems. 
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3.3. Plans as constraint networks 

PS plans are effectively programs that EXEC interprets at run time to generate a single, 

acceptable, and consistent behavior for the spacecraft. However, to ensure execution 

robustness plans should as much as possible avoid being single, completely specified 

behaviors. They should instead compactly describe a behavior envelope, i.e., a set of 
possible behaviors. EXEC can incrementally select the most appropriate behavior in the 

envelope while responding to information that becomes available only at execution time. 

PS satisfies this requirement by representing plans as constraint networks. For example, 
start and end times of tokens are integer-valued variables interconnected into a simple 

temporal constraint network [271. Codesignations relate parameters that must assume the 

same value for any plan execution. Other functional dependencies can also be represented. 

For example, tokens that describe thrust accumulation with the IPS engine contain 
constraints that relate the initial accumulation (due to previous thrust accumulation tokens), 

the final accumulation and the duration of the token. During plan construction, when PS 

tries to enforce compatibility constraints, it posts portions of a constraint network in the 

plan database. The plan database then enforces consistency checking by propagating the 
new constraints to the rest of the network. When the constraint network is consistent, 

constraint propagation deduces acceptable ranges of values for each variable. 

Plans are intrinsically jexible. During plan execution, EXEC interprets the plan’s 

constraint network in order to select specific values for the plan variables. For example, 

if the plan specifies an acceptable range for the start time of a token, EXEC will have the 

freedom to start token execution at any one of the range values. This decision will affect the 

value range for the start or end of other, as yet unexecuted tokens. To adjust value ranges, 
EXEC must be able to propagate constraints at run time. EXEC’s constraint propagation 

has very different requirements from that of PS (see Section 4.2.1). 

3.4. Practical generative planning 

Fig. 5 outlines the PS search process. If the partial plan in the plan database has “flaws”, 

PS selects one and extends the plan constraint network to fix it. Then the plan database 

performs an arc-consistency propagation to detect inconsistencies and restrict variable 
value ranges. If propagation detects an inconsistency, then PS chronologically backtracks. 

When the plan database contains no more flaws, a plan is returned. 

The flaw detection and repair process is analogous to other classical planning 

algorithms [67]. PS recognizes several kind of flaws. Fig. 5 lists three of them. The 
urzinstantiated temporal subgoal flaw refers to a single temporal relation in a token 

compatibility and is resolved analogously to open precondition flaws in classical planning. 
Unscheduled goal token flaws refer to goal tokens for which a legal position on a state 
variable has not yet been found. PS resolves this flaw either by finding such a legal position 
or, if such a position cannot be found, by rejecting the goal. The underconstrained variable 

value flaw is handled by restricting the value range for a variable to a subrange (possibly a 
single value) of the original range. The handling of this flaw is analogous to value selection 

in constraint satisfaction search. 
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Fig. 5. PS problem solving cycle. 

The prioritization of open flaws and the selection of alternatives during flaw handling 
relies on very simple heuristics. For example, uninstantiated temporal compatibilities are 
assigned a numeric priority according to the value range of the variables involved in the 

flaw at the moment the flaw first appears in the plan. 
Although the search strategy and heuristic language are rather simple, PS can solve 

problems of size and complexity adequate for practical application domains. For example, 
the DSl Remote Agent experiment domain consists of 18 state variables, 42 token 
predicates and 46 compatibility specifications. The largest plan in the nominal Remote 
Agent experiment scenario has 154 tokens and 180 temporal constraints between tokens. 
This translates into an underlying constraint network with 288 variables and 232 
constraints. Of these, 8 1 variables and 114 temporal-bound constraints constitute a simple 
temporal subnetwork that relates start and end times of tokens. The constraints in the rest 
of the network have an average arity (i.e., number of variables related by one constraint) 
of 3.5. The number of nodes expanded during plan generation is 649 with a search 

efficiency of about 64%. (Search efficiency is measured by the ratio of the number of 
nodes on the path to the solution and the total number of expanded nodes. Thus a search 
efficiency of 100% indicates no backtracking.) 

From the previous description we can conclude that PS is a purely generative planner 
that operates at a single abstraction level. Most importantly, PS does not use pre-compiled 
plan fragments but assembles the overall plan from atomic components. This differentiates 
PS from most practical applications of planning technology to date [13,15,69]. These 
systems rely on Hierarchical Task Network (HTN) planning, in which most of the power 
comes from hand-generated task networks that are patched together into an overall plan. 
The notable absence of generative planning in successful applications has led to the 
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commonly shared view that only HTN planning has true utility with respect to the 
automatic solution of planning problems of commercial significance. 

Although pre-compiling token networks into HTN can be a powerful problem solving 

technique, our choice of pure generative planning is not accidental. First, not all domains 
are equally amenable to the HTN approach. For example, in DSl the task decomposition 

hierarchy is shallow and useful pre-compiled task networks assemble only a small number 
of tokens. In these conditions the pre-compiled task networks do not significantly differ 

from the domain compatibilities and therefore HTN has no clear advantage with respect 
to generative planning. Second, replanning, especially with degraded capabilities, relies 

on representation of domain-level constraints between activities and goals, which are often 
not included in HTN representations [3 11. Third, and most importantly, the HTN formalism 

does not provide a strong separation between the encoding of the domain model and that 
of the problem solving heuristics. While the former is valid independent of the goals of a 

specific planning problem, the function of the latter is to ensure acceptable performance 
and quality for the solution of specific planning problems. Our approach instead clearly 
separates between domain model and heuristics. As we shall see in Section 6.2, the 

separation between domain models and problem solving heuristics is crucial to facilitate 
validation and has a big impact on the acceptability of AI technologies for mission-critical 

applications. 

3.5. Summary 

PS is a constraint-based, temporal planner that provides the high-level commanding 
capability for the Remote Agent architecture. From our experience we take the following 
lessons: 

l Classical planning and classical scheduling must be combined and augmented for 
autonomous commanding of complex systems. 

l The classical action/state dichotomy is problematic and should be substituted by the 
unified concept of a token. 

l A constraint-based plan representation organized across state variables is a powerful 
problem-solving framework for planning. 

l Heuristic generative planning can solve problems of practical significance. 

l The separation between domain models and problem solving heuristics is important 
for validating planners in real-world domains. 

4. Executive 

EXEC is a robust event-driven and goal-oriented multi-threaded execution system. 
It provides a language and a framework in which software designers can express how 
planning, control, diagnosis, and reconfiguration capabilities are to be integrated into an 
autonomous system. It can request and execute plans involving concurrent activities that 
may be interdependent, where the success, timing, and outcomes of these activities may 
be uncertain. It provides a language for expressing goal-decompositions and resource 
interactions. When interpreting this language at run time, the executive automates the 



N. Muscetrola et al. /Art$cial Intelligence 103 (1998) 547 25 

decomposition of goals into smaller activities that can be executed concurrently. This 
automates aspects of the labor-intensive sequencing function in spacecraft operations and 
raises the level of abstraction at which the ground system or on-board planner must reason. 
EXEC’s design also supports a close integration between activity decomposition and fault 
responses. This leads to more robust execution, avoids loss of mission objectives, improves 
mission reliability and resource utilization, and simplifies the design of the entire software 

system. 
EXEC is built on Execution Support Language (ESL) 13.51, which provides sophisticated 

control constructs such as loops, parallel activity, synchronization, error handling, and 

property locks [36]. These language features are used in EXEC to implement robust 
schedule execution, hierarchical task decomposition, context-dependent method selection, 

routine configuration management, and event-driven responses [%I. 
In the RA architecture, EXEC plays the main coordination role as the intermediary 

between the other flight software modules, both internal and external to RA. Here we 
concentrate on two main aspects of EXEC’s behavior: 

. 

. 

4.1. 

Periodic planning over extended missions, EXEC must periodically ask PS for new 
tasks and must coordinate PS operation with the other tasks being executed. Also, 
operations are not interrupted if capabilities are lost. EXEC will ask for a new plan by 

communicating to PS the available capabilities. 
Robust plan execution. EXEC must successfully execute plans in the presence of 

uncertainty and failures. The flexibility allowed by the plan is exploited by using 
a hybrid procedural/deductive execution strategy that performs context-dependent 

method selection guided by state inference based on model-bused diagnosis. Local 

recovery from faults involves planning guided by constraints from the current plan 

execution context. 

Periodic planning over extended missions 

Fig. 6 shows both major branches of the periodic planning and replanning cycle in RA: 
nominal execution and plan failure execution. Nominal execution occurs if all plan tokens 

Plan 
failure 

Plan-;“” 

assum;Zs U 

violated 
Plan 

failure 

Next horizon 

plan request 

Plan 

ready 

Fig. 6. Periodic planning and replanning cycle. 
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execute without MIR or EXEC detecting any execution failure. In this case plan execution 

proceeds to the end of the current scheduling horizon. At the pre-defined point in the plan, 
EXEC invokes PS, continues executing while waiting for the new plan and then smoothly 
installs the new plan into the current execution context. 

Plan execution failure occurs if MIR or EXEC encounter an unrecoverable failure. In this 

event, EXEC aborts all current activity and enters standby mode, which serves (by design) 
as a well-defined invocation point for planning. EXEC then requests a new plan from this 

state (possibly updating the planner about degraded capabilities) and starts executing the 

plan as soon as it receives it back from PS. 

A smooth execution of the periodic planning cycle requires EXEC to coordinate the 
generation of a new plan with other activities and to communicate information about 

available system capabilities to PS via MM. 

4.1.1. Planning to plan 

In the spacecraft domain, planning itself has informational preconditions (since planning 
relies on input planning experts, which often need to complete some activity before 

they have suitable input), state preconditions (it is hard to plan when too many things 
are changing quickly or unpredictably), and consumes scarce computational resources. 

Therefore, in RA invoking the planner is analogous to commanding other subsystems like 
propulsion or attitude control. Future planning activities appear in plans on a timeline. 

Domain constraints enforced in the plan ensure that their resources and preconditions will 
all be achieved before planning is invoked. This aspect of planning to plan [60] can be 
considered a form of meta-planning [7]. 

RA’s approach to planning to plan is illustrated in Fig. 7. In this example, the plan 

fragment has a constraint that the next round of planning should occur only after the 
Navigation expert has performed a new orbit calculation. This calculation relies on analysis 

of several pictures, so PS inserts into the plan the supporting imaging activities and the 

turns required to point the camera at the corresponding targets. During execution, EXEC 
will initiate the next round of planning when it executes the Planning token installed 

Goal Cruise_to_Target(t) 

Imaging 1 Idle 1 Imaging 1 Idle I 

A contained-by 

Attitude Point(a) Turn(a,b) Point(b) Turn(b,a) 

Fig. 7. Sample plan fragment 



in the plan. Because of the constraints explicit in the plan, this will happen only after the 
activities required for planning have been successfully completed. 

4.1.2. Concurrent planning and execution 

Even at pre-scheduled times, the limited computational resources available for planning, 
combined with the difficulty of planning with severe resource limitations, cause each round 
of planning to take a long time to complete. Throughout this process, the spacecraft will 

still need to operate with full capabilities. For example, with the current on-board processor 
capabilities, it is reasonable to expect PS to take up to 8 hours to generate a plan for one 

week of operation. This adds up to about six percent of the total mission time spent in 

generating plans. However, to reach the designated targets IPS propulsion may need to 
operate with high duty cycles in excess of 92% of the available time. Since other activities 

already require the IPS engine to be off (such as scientific experiments and observations), 

omitting IPS thrusting during planning would leave insufficient total thrust accumulation 
to reach the target. Hence, EXEC continues plan execution while PS is planning [60]. This 
necessitates tracking changes to the planning assumptions while planning, and using the 
currently executing plan for prediction about activities that will happen while planning for 

the next period is underway. 

4.1.3. Replanning with degraded cupabilities 

When operating over extended periods of time, a spacecraft will face problems arising 
from aging: the capabilities of its hardware and control system may diminish over time. 
Once these failures are recognized through a combination of monitoring and diagnosis (see 
Section 5) EXEC will keep track of such degradation when commanding future planning 
cycles. For example, one fault mode in DSl is for one of the thrusters to be stuck shut. 

The attitude control software has redundant control modes to enable it to maintain control 
following the loss of any single thruster, but an effect of this is that turns take longer 
to complete. When EXEC is notified of this permanent change by MIR, it passes health 
information back to PS. 

4.2. Robust plan execution 

We have seen that in nominal operations EXEC invokes the planning machinery as a 
by-product of plan execution, which ensures that resources are available for planning and 
that the projected state used as a basis for planning is well-defined. However, if execution 
fails before the planning activity is properly prepared and executed, the agent still needs a 
way to generate a plan and continue making progress on mission goals. RA addresses this 
problem as follows: if EXEC is unable to execute or repair the current plan, it aborts the 
plan, cleans up all executing activities, and puts the controlled system into a standby mode. 
This serves (by design) as a well-defined invocation point for planning. 

Entering a standby mode following plan failure is costly with respect to mission goals, 

because it interrupts the ongoing planned activities and important mission opportunities 
may be lost. For example, a plan failure causing EXEC to enter a standby mode during a 
comet flyby would cause loss of all the encounter science, as there would be no time to 
re-plan before the comet passed out of sight. Such concerns motivate a strong desire for 
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plan robustness, so that plan execution can continue successfully even in the presence of 
uncertainty and failures. 

RA achieves robust plan execution by: 

Executing flexible plans by running multiple parallel threads and using fast constraint 
propagation algorithms in EXEC to exploit plan flexibility. 

Choosing a high level of abstraction for planned activities so as to delegate as many 
detailed activity decisions as possible to the procedural executive. 
Handling execution failures using a combination of robust procedures and deductive 

repair planning. 

4.2. I. Executingjexible plans 
As discussed in Section 3.3, plans are constraint networks representing envelopes of 

desirable behaviors for the system. EXEC incrementally interprets plans and in doing so 
determines at run time the actual behavior of the system. This process involves propagating 
execution time information through the plan’s constraint networks. 

The process of interpreting a plan is carried out by EXEC’s plan runner. Here is a brief 
sketch of how the plan runner works. The plan runner treats each state variable as a separate 
thread of execution. Each token on the state variable corresponds to aprogram that runs on 
that thread. The transition between one token and the following one on the state variable is 
represented by a time point, i.e., a time variable in the underlying plan constraint network. 

Starting and terminating the execution of tokens involves a certain amount of processing, 
which must be done for each time point in the plan. The plan runner has to wait until a 
time point is enabled, i.e., all time points that must precede it have been executed, and the 
current time is within its time bound. When a time point can be executed, the plan runner 
executes the following cycle: 

(1) Set the execution time of the time point to be the current time. 

(2) Set all parameters of the tokens started by the time point to one of the acceptable 
values. 

(3) Propagate the consequences of the previous value assignments to the rest of the 
plan. 

(4) Terminate execution of all tokens ending with the time point. 
(5) Start execution of all tokens starting with the time point. 

After the execution of the previous cycle the plan runner waits until the current time 
enters the time bound of some other enabled time point. Note, that step 4.2.1 adjusts the set 

of possible values for both the start/end time bounds and the parameters of still unexecuted 

tokens. 
Making the plan runner work in a real-world application raised an issue that is often 

overlooked in AI execution research: the need for EXEC to give real-time guarantees about 

its operation. 4 A real-time guarantee can be seen as a way to quantify the “reactivity” 
of an agent. The way the problem arises in the plan runner is the following. Processing 

the execution cycle takes time, the execution latency h. One can show that EXEC will 
be unable to guarantee the exact execution time of a time point with a precision finer 
than the latency. In other words, when EXEC is asked to execute an event precisely at 

4 An alternative approach to real-time execution guarantees is addressed in the CIRCA architecture [55]. 
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time t, it can only guarantee that the actual event execution time will be somewhere in the 
interval [t - 1/(2L), t + 1/(2h)] [53]. Therefore, in order to produce a highly reactive and 

temporally precise agent (e.g., one that can guarantee taking a picture of a target within 
a few milliseconds of a given time) it is necessary to reduce the execution latency to a 

minimum. 
One important way to reduce k is to speed up the execution-time constraint propagation. 

In RA we address this speed-up problem for propagation in the time constraint network. 
One can show that it is always possible to transform a simple temporal constraint network 

into an equivalent one (i.e., one that represents the same set of consistent time assignment 

to time points) that is minimal dispatchable. Dispatchable means that EXEC’s time 
propagation need only propagate execution time to the immediately adjacent time points in 
the temporal constraint network. Minimal means that the network contains the minimum 

number of edges among all dispatchable networks 154,661. This means that the flexible 
temporal constraint networks that PS gives to EXEC are those for which execution can be 
the fastest possible. 

4.2.2. Delegating activity details to execution 

Generation of plans with temporal flexibility follows from the PS being a constraint- 

based, least-commitment planner. A complementary source of plan robustness relies 

on careful knowledge representation for each domain. The approach is to choose an 
appropriate level of abstraction for activities planned by PS so as to leave as many details 
as possible to be resolved by EXEC during execution. A PS token is abstracted in the 

sense that it provides an envelope of resources (e.g., execution time allowances, maximum 
allocated power consumption). For each token type EXEC has a task decomposition into 
more detailed activities that in the absence of exogenous failures are guaranteed by design 
to be executable within the resource envelopes. 

An example from DSl illustrates this approach (see Fig. 8). A Delta-V goal token 
requires the achievement of a certain change (delta) in the velocity of the spacecraft. 
Velocity changes are achieved by thrusting the engine for some amount of time while 

Thrust 
Goals I 

Delta_V(direction=b, magnitude=200) 

Attitude 

------.k /I?=--- 
Point(b) tokens 

ACS mode 

‘\- 
RCS mode Tvc mode 

Fig. 8. Plan fragment for achieving a change in spacecraft velocity. 



pointing the spacecraft in a certain direction. A total velocity change is achieved via a 
series of shorter thrust (time) segments, where between each segment the engine thrust is 

stopped while the spacecraft must be turned to the direction required by the next segment. 

There is a constraint that ACS be in Thrust Vector Control (TVC) mode shortly after IPS 

has started thrusting and it must be in Reaction Control System (RCS) control mode upon 
termination of a thrusting activity. ’ 

Initiating a thrust activity involves performing a number of complex operations on the 

engine and there is considerable uncertainty about how long this initiation takes before 

thrust starts accumulating. This translates into uncertainty about when to switch attitude 
control modes, how much thrust will be actually accumulated in a given segment, and 
how many thrust segments are necessary to achieve the total desired thrust. RA takes the 
following approach to this problem. PS inserts thrust tokens into the plan which may not 

need to be executed. EXEC tracks how much thrust has been achieved, and only executes 
thrust tokens (and associated turns) for so long as thrust is actually necessary. Similarly, PS 
delegates to EXEC the coordination of activity details across subsystems that are below the 
level of visibility of PS. In this example, we represent in EXEC’s domain knowledge the 

constraint between the engine thrust activity and the control mode of the ACS. The result 

is that plan execution is robust to variations in engine setup time and in thrust achievement. 
We note that this delegation of labor from PS to EXEC relies on many of the capabilities 

of a sophisticated procedural execution system [3.5,36,58]. 

4.2.3. HyhridproceduruUdeductive executive 

The preceding discussion has described ways to achieve robust execution primarily in 
the presence of uncertainty in timing or task progress. Another major cause of execution 

failure in the spacecraft domain is activity failure, often due to problems with the hardware. 
Several properties of the spacecraft domain drove us to design an executive that combines 
a rich procedural execution language with local recovery planning. These challenging 
properties include tight coupling between subsystems, irreversible actions, and complex 

internal structure. 

As an example of tight coupling between subsystems, consider two spacecraft subsys- 

tems in DS 1 (see Fig. 9): the engine gimbal and the solar panel gimbal. A gimbal enables 
the engine nozzle to be rotated to point in various directions without changing the space- 
craft orientation. The solar panels can be independently rotated to track the sun. In DS 1, 

both sets of gimbals communicate with the main computer via a common gimbal drive 
electronics (GDE) board. If either system experiences a communications failure, one way 
to reset the system is to power-cycle (turn on and off) the GDE. However, resetting the 

GDE to fix one system also resets the communication to the other system. In particular, 
resetting the engine gimbal, to fix an engine problem, causes temporary loss of control 
of the solar panels. Thus, fixing one problem can cause new problems. To avoid this, the 
recovery system needs to take into account global constraints from the nominal schedule 
execution, rather than just making local fixes in an incremental fashion, and the recovery 
itself may be a sophisticated plan involving operations on many subsystems. 

5 In TVC mode, the spacecraft is turned by steering the main engine gimbal, whereas in AC.‘? mode the 

spacecraft is turned using small attitude thrusters. 
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Fig. 9. Interacting gimbal subsystems in DS I. 
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Fig. 10. Simplified schematic of Casini spacecraft propulsion system. 

Another problem stems from the need to repair systems with complex internal structure 

and irreversible actions. For example, the propulsion system on the Cassini spacecraft [ 101 
has a complex set of valves (see Fig. 10) including explosivepyro valves, which can change 
states only once, and ordinary valves with varying amounts of wear and tear. It is difficult 
to express the right valve choices to redirect fluid flow while minimizing costs and risks in 

the wide variety of situations that might be encountered in flight. 
Examples like these drove the design of R4’s hybrid execution system [59], which 

integrates EXEC, the procedural executive based on generic procedures, with MIR, a 

deductive model-based executive (see Section 5) that provides algorithms for sophisticated 
state inference and optimal failure recovery planning. 

RA’s integrated executive enables designers to encode knowledge via a combination 
of procedures and declarative models, yielding a rich modeling capability suitable to the 
challenges of real spacecraft control. The interface between the two executives ensures both 
that recovery sequences are consistent with high-level schedule execution and that a high 

degree of reactivity is retained to effectively handle additional failures during recovery. 
The need to integrate EXEC with the local-recovery planning ability of MIR had a 

significant impact on the design of EXEC. In particular, we found that our integration 

approach required synchronization constructs that were not present in most execution 
languages. In the NewMAAP RA prototype, EXEC was based on the language provided by 
RAPS [33]. RAPS supports robust execution through the definition of multiple methods for 
each procedure. If one method fails, the RAP interpreter selects among alternate methods 
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or variable bindings until it has run out of options, in which case the entire procedure 
fails. Effectively, RAPS handles failures on an activity-by-activity basis. The NewMAAP 

RA prototype followed a similar approach and EXEC invoked MIR to plan a recovery for 

each activity separately. However, the design of real flight software for DS 1 introduced the 
problems of tightly interacting subsystems described above. This caused us to re-design 
the interface so that EXEC would suspend failed activities and provide global constraints 

(to preserve the health of functioning subsystems) as part of a request to repair failures. 
This turned out to be extremely difficult to do in RAPS, for three reasons. First, RAPS 
has no constructs for tasks to describe properties they need maintained for successful 

execution. Second, RAPS does not support nested contexts for recovery procedures, so 
that tasks can respond to failures in a specific way but ultimately draw on more generic 

recoveries. Third, RAPS does not support suspending threads based on external interrupts 

while a global recovery is in progress. 6 These difficulties motivated the design the new 

execution language, ESL, with facilities for easy language extension, a more flexible notion 
of concurrent activity and interrupts, hierarchical recovery procedures, and declarations of 

required properties [35,36]. 

4.3. Summary 

EXEC is a robust event-driven and goal-oriented multi-threaded execution system that 
coordinates the activity of the other flight software modules, both internal and external to 
the Remote Agent. This section has discussed the following major points: 

l Coherent autonomous operation across a long-term mission can be achieved through 
periodic planning guided by a mission profile. 

l Executing flexible constraint-based plans with bounded execution-time propagation 

results in robust plan execution with guaranteed real-time behavior. 
. Procedural and deductive capabilities can be integrated within the reactive execution 

loop. 
. Enhanced synchronization primitives to track state requirements are necessary for 

concurrent execution systems. 
. A robust multi-threaded executive provides the core capabilities to support an 

architecture for autonomous operations over extended missions. 

5. Model-based mode identification and reconfiguration 

The mode identification and reconfiguration component of the Remote Agent architec- 

ture is provided by the Livingstone system [71]. Livingstone is a discrete model-based 
controller that sits at the nexus between the high-level feed-forward reasoning of classical 
planning and scheduling systems, and the low-level feedback control of continuous adap- 
tive methods (see Fig. 11). It is a discrete controller in the sense that it constantly attempts 
to put the spacecraft hardware and software into a configuration that achieves a set point, 

6 Similar concerns apply to other procedural execution systems, like PRS [37], RPL [46], Interrap [50] and 

Golog 1431. 
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Fig. I 1. Livingstone architecture diagram. 

Fig. 12. Different configurations that achieve thrust. The circled valve has failed. 

called a conjiguration goal, using a sensing component, called mode identification, and a 
commanding component, called mode reconfiguration. It is model-based in the sense that 
it uses a single declarative, compositional spacecraft model for both MI and MR. 

A configuration goal is a specification of a set of hardware and software configurations 
(or modes). More than one configuration can satisfy a configuration goal, corresponding to 

line and functional redundancy. For example, Fig. 12 shows two configurations that satisfy 
the goal of providing thrust, with the one on the right being used when the circled valve 

fails. Other configurations, corresponding to different combinations of open valves, are 
used to handle other valve failures. 

Livingstone’s sensing component, mode identification (MI), provides the capability to 
track changes in the spacecraft’s configurations due to executive commands and component 

failures. MI uses the spacecraft model and executive commands to predict the next nominal 
configuration. It then compares the sensor values predicted by this configuration against 
the actual values being monitored on the spacecraft. Discrepancies between predicted 
and monitored values signal a failure. MI isolates the fault and diagnoses its cause, thus 
identifying the actual spacecraft configuration, using algorithms adapted from model-based 
diagnosis [23,24]. 
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MI provides a variety of functions within the RA architecture, including: 
l Mode confirmation: provides confirmation to EXEC that a particular spacecraft 

command has completed successfully. 

l Anomaly detection: identifies observed spacecraft behavior that is inconsistent with 
its expected behavior. 

l Fault isolation and diagnosis: identifies components whose failures explain detected 
anomalies. In cases where models of component failure exist, identifies the particular 
failure modes of components that explain anomalies. 

l Token tracking: monitors the state of properties of interest to the executive, allowing 
it to monitor plan execution. 

When the current configuration ceases to satisfy the active configuration goals, 
Livingstone’s mode reconfiguration (MR) capability can identify a least cost set of control 
procedures that, when invoked, take the spacecraft into a new configuration that satisfies 

the goals. MR can be used to support a variety of functions, including: 
l Mode configuration: place the spacecraft in a least cost configuration that exhibits a 

desired behavior. 

l Recovery: move the spacecraft from a failure state to one that restores a desired 
function, either by repairing failed components or finding alternate ways of achieving 
the goals. 

l Standby and safing: in the absence of full recovery, place the spacecraft in a safe state 
while awaiting additional guidance from the high-level planner or ground operations 

team. 
Within the RA architecture, MR is used primarily to assist EXEC in generating recovery 

procedures, in response to failures identified by MI. (Section 4.2.3 has a more detailed 

discussion.) 
Three technical features of Livingstone are particularly worth highlighting. First, the 

long held vision of model-based reasoning has been to use a single central model to 
support a diversity of engineering tasks. As noted above, Livingstone automates a variety 
of tasks using a single model and a single core algorithm, thus making significant progress 
towards achieving the model-based vision. Second, Livingstone’s representation formalism 

achieves broad coverage of hybrid discrete/continuous, software/hardware systems by 
coupling the concurrent transition system models underlying concurrent reactive languages 
[44] with the qualitative representations developed in model-based reasoning [25,68]. 
Third, the approach unifies the dichotomy within AI between deduction and reactivity 

[ 1,9], by using a conflict-directed search algorithm coupled with fast propositional 
reasoning. We now discuss these latter two points in more detail. 

5. I. Representation formalism 

Implemented model-based diagnosis systems traditionally specify behavior through 
constraint-based modeling, for example, see [ 17,23,39,65]. In this formalism, system 
models are built compositionally from individual component models and a specification 
of the connections between components. Each component model consists of a set of 
modes, corresponding to the different nominal and failure modes of the component. A set 
of constraints characterize the behavior of the component in each of its modes. The 
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compositional, component-based nature of the modeling formalism enables plug-and-play 
model development, supports the development of complex large-scale models, increases 

maintainability, and enables model reuse. 
While compositional, constraint-based modeling is well suited for many model-based 

diagnosis applications it has a significant limitation. Its widespread use is restricted by the 
fact that it typically has no model of dynamics, in other words, no model of transitions 

between modes. Modeling dynamics is essential for Livingstone since it needs to track 
changes in spacecraft configurations and determine reconfiguration sequences. 

Most formalizations of model-based diagnosis, on the other hand, have assumed that 
models are specified in first-order logic [21,62]. The enticement of first-order logic is its 
clear, well understood semantics. However, first order logic is not an accurate reflection 

of existing implementations, and is wholly inappropriate as a representation formalism 
for building practical diagnosis systems. On the one hand, its expressiveness leads to 

computational intractability (first-order satisfiability is semi-decidable), precluding its use 

in a real-time system. On the other hand, first-order logic does not offer a particularly 
natural language for describing the dynamics of state change. Modeling dynamics is 

essential to modeling most hardware and software systems. Finally, first-order logic, by 
itself, is an impractical language for writing large scale models, with its flat structure of 
constants, functions, and relations. 

Our challenge with Livingstone then was to develop a practical modeling language 
that is effective for compositional modeling, can represent the dynamics of hardware and 
software naturally, has a clean underlying semantics, and can be computed with efficiently 
in real-time. 

5. I. 1. Concurrent transition systems 

We overcame the above limitation by coupling compositional constraint-based modeling 
with the concurrent transition systems used to model reactive software [44]. In this 
formalism, each component is modeled as a transition system consisting of a set of 

modes with explicit transitions between modes. For example, Fig. 13 shows the modes 
and transitions of a valve and a valve driver. Each transition is either a nominal transition, 
modeling an executive command, or a failure transition. As before, each mode is associated 
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Fig. 13. Transition systems for a valve and a valve driver. Shaded modes are failure modes. Fractional numbers 

represent transition probabilities and whole numbers represent transition costs. 
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with a set of constraints that describe the component’s behavior in that mode, for example, 
the inflow = outflow = 0 constraint of the Closed mode of a valve. To ensure that the 
representation is computable and has a well defined semantics, we restrict constraints to 

finite domains, and compile them down into propositional logic. 
In terms of dynamics, nominal transitions have preconditions that model the conditions 

under which that transition may be taken. For example, in the absence of failure, a valve 
transitions from Open to Closed when it receives a Close command. At any given time, 
exactly one nominal transition is enabled, but zero or more failure transitions may be 
possible, for example, a Closed valve may fail by transitioning to the Stuck open or Stuck 

closed modes. Hence, transitions have associated probabilities, which are used to model 
the likelihood of a failure occurring. Probabilistic failure transitions can be used to model 
intermittence, e.g., an On valve driver may fail by transitioning to the Resettable failure 

mode, but may transition back to On without any explicit command. Nominal transitions 
also have associated costs, providing a way to model the different costs of command 

sequences. For example, the least cost way of repairing a valve driver exhibiting Resettable 
failure is to Reset it, rather than turning it off and then on. 

Components within a larger system can be viewed as acting concurrently, communi- 
cating over “wires”. Hence, as with constraint-based modeling, system models are built 
compositionally by connecting component transition system models. The resulting model 
is a cancurrent transition system model in the sense that a single transition of the system 
corresponds to concurrent transitions by each of the component transition systems. Natu- 
rally, component transitions are consistent with the component connections. For example, 
the Open/Close command input to the valve is not directly controllable, but rather is an 
output from the valve driver. Hence, a valve transition can be commanded only if the valve 

driver is On. 
To support large scale modeling, we have built a compositional, model-based program- 

ming language that supports the specification of these concurrent transition system mod- 
els. This specification is compiled down into a restricted propositional temporal logic for- 
mula with a well-defined semantics. This formula is used directly by Livingstone’s MI 
and MR components. We have found that this modeling formalism has enabled us to nat- 

urally model (a) discrete, digital systems, e.g., the valve driver; (b) analog systems using 
qualitative modeling [25,68], e.g., the valve; and (c) real-time software, e.g., the spacecraft 
attitude controller. Hence, the primary lesson of our experience is: 

Probabilistic, concurrent transition systems provide an appropriate formalism for 
building model-bused autonomow systems that is expressive, has a clean semantics, 

and is tractable. 

5.1.2. Qualitative modeling 
As noted above, we use simple, qualitative representations for modeling analog systems. 

Sacks and Doyle [63] have strongly criticized the value of such qualitative representations, 
arguing that they are too ambiguous, and can be used to analyze only a handful of simple 
systems. They conclude their critique with the comment that “[Qualitative] equations are 
far too general for practical use” [63]. Indeed much of the work on qualitative reasoning 
and model-based diagnosis has focused on a variety of methods that try to eliminate the 
computation of ambiguous values, by applying more and more quantitative information. 
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Our experience has been quite to the contrary. First, the fact that a model may lead to 
ambiguous values is no indicator of whether or not a representation is sufficient. In the 
case of diagnosis it simply must be the case that enough values have sufficient precision to 
rule out incorrect diagnoses. Second, the detail of modeling information necessary to rule 
out incorrect diagnoses can be very little. For example, researchers at Xerox PARC tried to 
develop a simple set of copier models sufficient to cover all diagnoses listed within a human 
generated diagnostic repair procedure [4]. What they found is that the representations used 
in these models were far simpler than the representations Sacks and Doyle asserted were 

so impoverished. 
Based on this lesson, we adopted a modeling formalism for Livingstone that models 

analog behaviors using an extremely simple representation based on qualitative deviations 
from nominal behavior. We found that such representations were more than adequate for 
all of Livingstone’s mode identification and reconfiguration tasks. Furthermore, the very 
simpiicity of the models had important benefits. First, in contrast to detailed quantitative 
models, they are easy to acquire, and can be acquired during early stages of the design 

process. We did not have to tease out the exact form of quantitative equations, or worry 
about carefully tuning numerical parameters. This enabled us to rapidly prototype the fault 
protection system concurrently with hardware design. Second, qualitative models provide 
a measure of robustness to design changes and modeling inaccuracy. For example, if the 
hardware designers choose to substitute a different thruster valve to produce more thrust, 
the qualitative model does not change: while the underlying meaning of nominal thrust 
changes, the qualitative model in terms of deviations from nominal remains the same. 
Third, qualitative models allow us to use propositional encodings that enable fast inference. 
This was essential to providing rapid and timely response. (We discuss this point in detail 
shortly.) The essential lesson we draw from our experience is the following: 

Extremely simple, qualitative models are appropriate for many practical and signijcant 
tasks. 

5.2. Reactivity and deduction 

A key contribution of Livingstone is the fact that it unifies the dichotomy within Al 
between deduction and reactivity. Several authors, principally [ 1,9], have argued that sym- 
bolic reasoning methods, such as planning, deduction, and search, are unable to bridge 
the gap between perception and action in a timely fashion. For example, in discussing the 
construction of reactive systems that rapidly handle the complexity, uncertainty, and imme- 
diacy of real situations, Agre and Chapman claim that “proving theorems is out of the ques- 
tion” [I]. Rather, the argument goes, the right way to construct reactive systems is to com- 
pile out all the inference into a network of combinational circuits, possibly augmented with 
timers and state elements, leading, for example, to the subsumption architecture [9]. But is 

this solution adequate for all types of reactive systems, particularly remote agents? Equally 
important, is it even correct that deduction and search can play no role in reactive systems? 

5.2.1. Fast deduction and search 
Consider, first, the question of the adequacy of the above thesis. Autonomous systems, 

such as deep space probes, Antarctic and Martian habitats, power and computer networks, 
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chemical plants, and assembly lines, need to operate without interruption for long periods, 
often in harsh environments. In such systems, rapid correct response to anomalous 

situations is essential for carrying out the mission. Responding to any single anomalous 
situation using a hardwired network is plausible. However, as the length of time for which 

autonomous operations is desired increases, the combinations of anomalous situations that 

may arise grows exponentially. Constructing a reactive network that responds correctly to 

this cascade of failures is a truly daunting task. The compositional, model-based paradigm 

embodied in Livingstone, with its ability to identify multiple failures and synthesize correct 

responses directly from a compact declarative model, provides a much more practical 

solution. 

But what of the concern that search and deduction are sufficiently time-consuming that 

responses at reactive time-scales are not possible? Livingstone addresses this concern 
with a combination of techniques (see [71] for details), We formulate both MI and MR 

as combinatorial optimization problems: MI is formuiated as finding the most likely 

transitions that are consistent with the observations; MR is formulated as the least cost 
commands that restore the current configuration goals. 

Livingstone does follow the spirit, proposed by Brooks, of compiling the system into a 

simple network. However, instead of a functional network that is evaluated, Livingstone 

compiles the models into a propositional constraint network. This is a very simple 

deductive search problem that we highly tune for performance. Our motive for reducing all 
model-based tasks to a highly tuned search algorithm on propositional constraints parallels 

the intuitions behind reduced instruction set computers (RISC). 

Livingstone solves these combinatorial optimization problems using a conjlict-direcred 7 

best-@ search, coupled with fast propositional inference using unit propagation. Empir- 
ically, the use of conflicts dramatically focuses the search, enabling rapid diagnosis and 

response. While unit propagation is an incomplete inference procedure, it suffices for our 

applications. The reason is that we use causal models, with few (if any) feedback loops, so 
that unit propagation is complete or can be made complete with a small number of carefully 

chosen prime implicates [ 191. 

5.2.2. Truth maintenance 

The above techniques allow Livingstone to identify modes and reconfigure hardware 

while evaluating only an extremely small set of candidate solutions. Hence the potentially 

exponential search appears not to be a major part of the problem. Nevertheless, with 
requirements for response times on the order of hundreds of milliseconds on a slow 

processor, unit propagation becomes a significant problem. Livingstone’s performance is 

enhanced by another order of magnitude using a truth maintenunce system, called the 

Incremental Truth Maintenance System ITMS [.56], that computes unit propagations over 
time. The ITMS is a variant of the more traditional Logic-based TMS (LTMS) [28,45] 

that optimizes context switching. The ITMS, like the traditional LTMS, computes truth 
assignments over a trajectory of states in an “event driven manner”. That is, the ITMS 

‘A conflict is a partial assignment such that any assignment containing the conflict is guaranteed to be 

infeasible. 
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propagates chunges in truth assignments from one state to another, rather than performing 

a full unit propagation in every state. 
Livingstone’s use of an ITMS is in sharp contrast to other model-based diagnosis 

systems [20,23,24,30] that use a fundamentally different type of TMS, called the 
Assumption-based TMS (ATMS) [22]. Concerns about the efficiency of the LTMS 
in the 80’s lead de Kleer to introduce the ATMS and write that traditional TMSs 

“. . have proven to be woefully inadequate . they are inefficient in both time and 

space” [ 181. The advantage of the ATMS is its ability to switch contexts without any 
label propagation, thus avoiding the linear time cost of unit propagation. However, this 

comes at the cost of an exponential time and space pre-labeling process. These costs can 
be particularly problematic for embedded, real-time systems. More recently, various ATMS 

focusing algorithms have been developed to alleviate the exponential cost of labeling by 
restricting ATMS label propagation to just the current context [24.29,34]. Precise empirical 
comparisons between model-based diagnosis systems based on focused ATM& and those 

based on LTMSs/lTMSs are unavailable. However, we did perform limited experiments on 
a version of Livingstone that contained no TMS. Even without a TMS, Livingstone’s run 

time on a standard diagnostic test suite was comparable to diagnostic algorithms, such as 
Sherlock [24], that contain an ATMS. 

This result led us to revisit the LTMS technology, which had received little attention over 

the last decade. We found that the addition of a traditional LTMS significantly improved 
Livingstone’s performance. On the other hand. we also found that the LTMS performance 
was in some cases far from ideal. In the best case an LTMS update would be linear 

in the number of labels that change between successive states. Unfortunately, applying 

Livingstone to the DSl spacecraft models, we found that the LTMS spent a significant 
percentage of its time on labels that remain constant; more specifically, 37% on average, 

and 670% in the worst case. This worst case can be deadly for real systems with hard time 
requirements. The ITMS offers a more aggressive approach to label update that is merely 
5% off ideal, with a worst case overhead of only 100%. The use of this TMS resulted in an 

order of magnitude improvement in Livingstone’s performance, over the version with no 
TMS, and allowed Livingstone to meet the stringent timing requirements of DS 1. 

The primary lessons of the above discussion are the following: 

Seurch and deduction are often essential in reactive systems. Furthermore, search 

and deduction can be carried out at reactive time scales. Fir&y, LTMS-style truth 

maintenance systems can provide an essential tool,for speeding up deductive search. 

5.3. Summay 

Livingstone is a discrete model-based controller that provides the mode identification 
and reconfiguration capability within the Remote Agent architecture. Our experience with 
Livingstone has provided the following technical lessons: 

l Many reactive system tasks can be carried out using a single model. 
l Concurrent transition systems provide an appropriate formalism for building model- 

based autonomous systems. 
l Strikingly simple qualitative models are effective for many real-world tasks. 
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Search and deduction are often necessary in a reactive system. 
Search and deduction can be carried out reactively. 
Truth maintenance systems are powerful tools for speeding up search. 

6. Lessons from technology insertion 

Most of the discussion in this paper has focused on technical issues we encountered 
while developing the RA. In addition to raising technical issues, the process of working on 
a real mission and with a real mission schedule provided valuable lessons about inserting 
this kind of technology into operational missions [2]. * 

Three key technology insertion lessons are the following: 

l Human-centered operations. While new classes of missions may require systems 
with highly autonomous capabilities, it is important that such systems also support 
operational modes in which humans exercise tight control over the system. 

l Validation and testing. A major barrier to increasingly autonomous systems is concern 

about how to test them and validate that they will actually perform as desired. 
Architectural design choices that let spacecraft engineers focus on the domain model, 
rather than on the problem-solving methods, can significantly help address this barrier. 

l Schedule impacts. Putting an autonomous system on-board a spacecraft potentially 
has a major impact on the traditional flight software development schedule, as it can 
require knowledge normally codified during operations (after the system is built) to be 
encoded in the system early on. Developing first things first can alleviate this problem. 

l Model-based skunkworks. Ensuring coherence of mental models across a large 
software team can be inordinately time-consuming. This has motivated us to 
develop a research paradigm in which all software will be programmed in a unified 
modeling language by a small team supported by automated synthesis techniques and 

collaborative modeling environments. 
We believe that these lessons generalize to other situations in which complex au- 

tonomous systems are deployed. We briefly discuss these lessons in the following sub- 
sections. 

6.1. Human-centered operations 

The NewMAAP RA prototype was designed to support scenarios involving extremely 
autonomous operations in which human communication was impossible. As we moved 

from prototyping into actual flight code development and teamed with ground operators, 
we had to extend the RA architecture to address the broader operational context in which 

the RA would be used. The key insight we gained was that, while extreme autonomy 
is necessary for certain mission phases, also essential is support for human interaction 
when such interaction is possible [8,61]. Such an approach offers two key benefits. First, 
the ability to draw on human expertise, especially in anomalous conditions, can simplify 
the design of the system and increase the chance of mission success. Second, designers 

8 Montemerlo [49] provides a set of lessons summarizing earlier experience with technology insertion at NASA. 
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and operators can automate capabilities incrementally, rather than relying on a fully 
autonomous system at launch time. This can help increase confidence and improve operator 

acceptance. 
As a result of extensions we made to the RA for these purposes, the RA now has the 

following features: RA shares the long-range mission profile with ground operators to 

enable asynchronous ground updates; ground operators can monitor and command the 
spacecraft at multiple levels of detail simultaneously; and ground operators can provide 
additional knowledge to the RA, such as parameter updates, model updates, and diagnostic 

information, without interfering with the activities of the RA or leaving the system in an 
inconsistent state. Additional forms of support for human interaction with remote agents is 
a major area of ongoing research [8,6 11. 

6.2. Validation and testing 

The strict separation between modeling and problem solving heuristics within PS (see 

Section 3) also addresses another lesson learned from the DSl experience. While AI 
planning research has so far concentrated on problem-solving performance, in mission- 
critical applications it is validation of the problem-solving system that takes a much 

more prominent role. In our interaction with spacecraft engineers the question that is 
most often and insistently asked is “how can we be sure that your software will work 
as advertised and avoid unintended behavior ?” Indeed, this is a question that applies to 
the development of all aspects of mission-critical embedded software systems, AI based or 

not. However, systems like the RA promise complete autonomy over a much wider variety 
of complex situations than was previously possible. On the face of it, this makes validation 

of these systems harder than traditional systems. Fortunately, the declarative nature of Al 
technology allows the inspection of the models and facilitates a deep understanding of 
the behavior of the system which is unprecedented in traditional software development 
approaches. 

Our use of a declarative approach dictates a clean separation between models and 
heuristics. This ensures that system and mission engineers can focus on guaranteeing that 

requirements are met, and not on the details of how the reasoning engines manipulate the 

models in order to produce solutions efficiently. A strict separation between models and 
heuristics allows non-AI specialists to inspect the model and understand the knowledge 

embedded in the system without having to be experts in AI problem solving methods. 
We believe that inspectable representational techniques and tools to automatically analyze 

models and synthesize problem solving heuristics are important research areas that will 
widen the applicability of AI techniques to real-world applications. 

6.3. Schedule impacts 

In the traditional approach to spacecraft development, designers build into the flight 
software only those capabilities necessary to ensure safety of the system. When anything 
goes wrong on the spacecraft, it puts itself into a safe state and waits for help from 
ground operators. This approach enables much knowledge of system interactions to 
remain uncodified, available only in the heads of the designers. It also enables additional 
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automation to be put into the ground system, typically on a schedule much later than the 
flight software development. 

In the RA approach to building an autonomous system on-board a spacecraft, designers 
must codify the knowledge at a much earlier stage, so that it can be included in the on- 

board models used by the RA. This need for earlier modeling can potentially have a 
major impact on the traditional flight software development schedule. While this is not 

a technical concern, such schedule issues play a major role in the success of technology 
insertion, especially in the new era of faster development cycles and concurrent engine- 

ering. 
Fortunately, we have found that our model-based programming approach has advantages 

which compensate for the schedule impacts. Since the declarative models mirror the 

hardware design, the models are easier to maintain in the face of changing hardware 
details, as compared to traditional software which keeps hardware design assumptions im- 

plicit. 
With this said, there still remains considerable flexibility about the order in which to 

perform model development. The key lesson we learned in this respect is workjrst things 
jirst: focus first on the critical models at the level necessary to meet launch requirements. 

Then progressively refine the models to provide increased performance and capabilities. 
This approach reduces the tendency to have detailed models of some components while 
major spacecraft capabilities are still unmanaged, and enables the model-based approach 

to fit into the risk management approach of the overall flight software project. 

6.4. Model-bused skunkworks 

Often the creativity and speed of a design time decreases exponentially with the size 
of the team. Lunar Prospector [40] and Mars Pathfinder [14] are two excellent examples 

of missions developed by small teams, that were inexpensive, were assembled together 

in a short time span, and operated flawlessly. However, it is difficult to sustain this pace 
as we move towards far more capable missions that come closer to emulating a virtual 

presence. For example, the DSl flight software team was comprised of more than 40 
individuals, broken into teams responsible for writing hardware specifications, systems 
engineering specifications, simulators, attitude control codes, discrete device drivers, 

EXEC procedures, MIR models and PS models, test scripts and systems integration. 
A significant fraction of rhe development time was devoted to preparing documents and 
meeting presentations directed towards knowledge acquisition, scoping, model definition 

and validation. What made this so challenging is that each of the seven teams had their 
own mental model of how the spacecraft behaved. The purpose of these time-consuming 
meetings was to bring these many perspectives into alignment. The large team size and the 
fact that many of these models were both implicit and changing made miscommunication 

inevitable, making the task inordinately time-consuming. 
The research challenge is then to provide a development paradigm and a set of tools 

that allow a small team, perhaps a dozen, to develop an equivalent system. These tools 
should allow models at all levels to be explicit, should facilitate the development of a 
single coherent model, and should be able to easily track a dynamically changing hardware 
design. The paradigm we are developing we call model-based skunkworks. In this paradigm 



all aspects of the flight software will be programmed through models. Automated synthesis 
techniques will use models to generate simulators, discrete Ilight codes, continuous attitude 
control codes, and test scripts. To facilitate model synergy, models will be developed 
using a unified model-based programming language that incorporates the best ideas of 

encapsulation from classical programming languages. Model building by a disparate 
team will be facilitated by distributed, collaborative modeling environments. Finally, 
human assessment of the flight software’s capability by systems engineers and project 
management will be facilitated through analysis tools that generate review documents from 

models. Finally, an extensive, reusable model library will ultimately allow future spacecraft 
to be plugged together from past knowledge. 

7. Conclusions and future work 

The challenge of building a remote agent to assist in establishing a virtual presence 

in space has proved to be an exciting and unique opportunity for AI. The characteristics 
of the domain that require highly reliable autonomous operations over long periods of 
time with tight deadlines, resource constraints, and concurrent activity among tightly 

coupled subsystems, has led to the development of a Remote Agent architecture based 
on the principles of model-based programming, on-board deduction and search, and goal- 
directed, closed loop commanding. The resulting architecture integrates constraint-based 
temporal planning and scheduling, robust multi-threaded execution, and model-based 
mode identification and reconfiguration. These components draw upon research in a variety 

of different areas of AI, including constraint propagation, search, temporal reasoning, 
planning and scheduling, plan execution, reactive languages, deduction, truth maintenance, 

qualitative reasoning, and model-based diagnosis. 
Jumping headlong to meet fast-paced challenges, first with the NewMAAP demonstra- 

tion and then with DS 1, has provided us with an invaluable opportunity to reassess some 
of Al’s conventional wisdom. Our experience has been in sharp contrast to this conven- 

tional wisdom, with the main lessons being that generative planning can scale up to solve 
practical problems, and that search and deduction can be carried out within the reactive 
control loop. Furthermore, our embedding in an important real-world problem not only 
provides a veritable fountain of interesting research problems, but also ensures the rel- 

evance of the research. In some sense, this is the most important lesson of our experi- 
ence! 

While the Remote Agent is a significant step toward reaching the goal of providing 
full autonomy for NASA’s explorers, much still remains to be done. Future remote agents 
will need to be much more adaptive in how they react with an uncertain environment. 
They will need to anticipate imminent failures. and plan for contingencies. They will need 

to be active injbrmution seekers, to better understand their environment and their own 
state. As fleets of explorers descend upon distant planets, they will need to colluborute 

with each other to achieve mission goals. We expect future NASA missions, such as 
the ones highlighted in the Introduction, to provide the concrete challenges that require 
building more and more capable remote agents. This exciting future is aptly captured by 
the following vision for autonomy: 
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“With autonomy we declare that no sphere is off limits. We will send our spacecraft to 
search beyond the horizon, accepting that we cannot directly control them, and relying 
on them to tell the tale.” 

- Bob Rasmussen, Cassini AACS Cognizant Engineer and New Millennium 

Autonomy Team. 
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